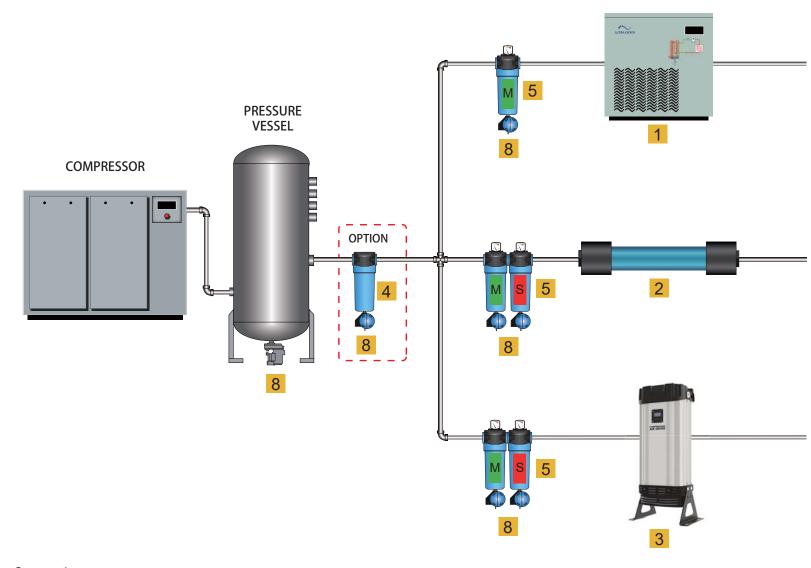


Membrane Air Dryer


ISO 8573-1 purity classes

The ISO 8573 group of international standards is used for the classification of compressed air purity. The standard provides the test methods and analytical techniques for each type of contaminant. The table below summarises the maximum contaminant levels specified in ISO 8573.1: 2010 for the various compressed air quality classes. Each compressed air classification can be achieved by installing a specific filter grade or a combination of filter grades, depending upon the required performance as shown in the diagram opposite.

		SOLID PARTICLES	HUMIDITY AND LIQUID WATER	OIL						
CLASS		umber of particles per cu function of particle size, c	Pressure dew point	Concentration of total oil ^(a) (liquid, aerosol and vapour)						
	0,1 μm < d ≤ 0,5 μm	0,5 µm < d ≤ 1,0 µm	1,0 μm < d ≤ 5,0 μm	°C	mg/m ³					
0		As specified by the	and more stringent than class 1							
1	≤ 20 000	≤ 400	≤ 10	≤ -70	≤ 0,01					
2	≤ 400 000 ≤ 6 000		≤ 100	≤ -40	≤ 0,1					
3	Not specified ≤ 90 000		≤ 1 000	≤ -20	≤1					
4	Not specified Not specified		≤ 10 000	≤ +3	≤ 5					
5	Not specified	Not specified	≤ 100.000	≤ +7	Not specified					
6				≤ ±10	Not specified					
		Mass concentration ^(a) C _p mg/m ³		concentration of liquid water ^(a) C _w g/m ³						
6		$0 < C_p \leq 5$			Not specified					
7		$5 < C_p \le 10$		$C_W \leqslant 0.5$	Not specified					
8		Not specified		$0.5 \leqslant C_W \leqslant 5$	Not specified					
9		Not specified		5 < C _W ≤10	Not specified					
X		C _p > 10		C _W > 10	> 5					
(a) At referen	(a) At reference conditions: air temperature of 20° C. absolute air pressure of 100 kPa (1 bar), relative water vapour pressure 0									

(a) At reference conditions: air temperature of 20° C, absolute air pressure of 100 kPa (1 bar), relative water vapour pressure 0.

Suggestion: the optional items to be applied when compressed air with much oils.

ICO 0572 4(...star)

1 REFRIGERATED COMPRESSED AIR DRYER

A refrigerant dryer uses a refrigerant circuit and heat exchanger to precool air, refrigerate it to condense out moisture vapor, and then reheat the air to prevent pipe sweating downstream.

ISO 8573-1(water):	Class 4
Dew point:	≤3°C
Capacity:	25-1700 Nm³/h
Max. operating press	sure: 16 bar(g)
Refrigerant:	R134a, R407c,
IP grade:	IP22 / IP44
Power supply:	200-240V/1ph 360-440/3ph 50&60 Hz
Alarm:	Evaporator over temperature alarms, Sensor failure. Common alarm, high dew point temperature alarm output.

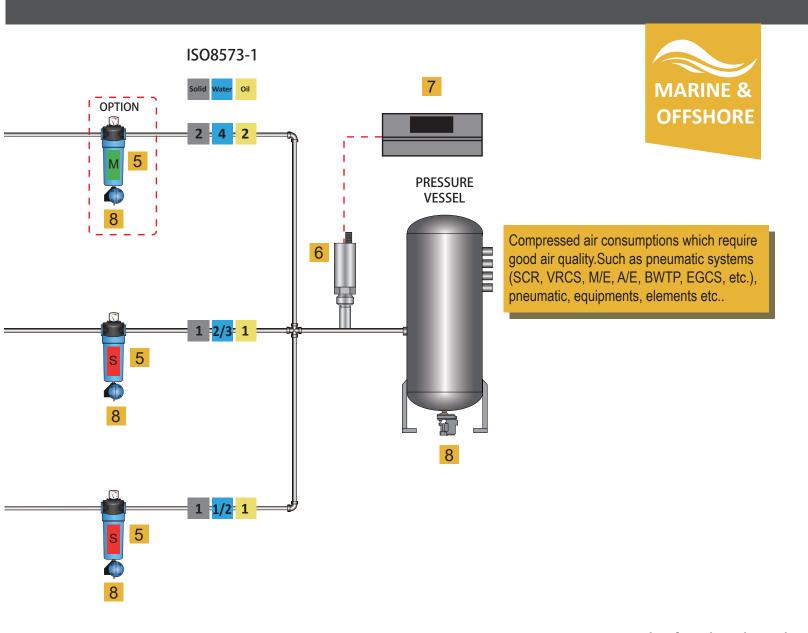
2 MEMBRANE AIR DRYER

The compressed air through a bundle of hollow fibres. Water vapour diffuses throughthe walls of the fibres. At the outlet of the unit, a small volume of the dry compressed air sweeps the moisture away from the outside of the fibres and exhausts to the atmosphere.

130 0373-1(water).	Class 2	Class 3
Dew point:	≤-40°C	≤-20°C
Capacity:	2-11	0 Nm³/h
Max. operating pressure:	12.5	bar(g)

3 HEATLESS ADSORPTION DRYER

Heatless adsorption dryers, are simple, reliable and cost effective and for small to medium flow systems, provide an even more reliable, smaller, more compact & lightweight dryer.


ISO 8573-1(water):	Class 1	Class 2
Dew point:	≤-70°C	≤-40°C
Capacity:	6-18	86 Nm³/h
Max. operating pressure:	16 b	ar(g)
IP grade:	54	
Power supply:	360-	240V/1ph 440/3ph 60 Hz

4 CONDENSATE SEPARATOR

Cyclone condensate separators use centrifugal motion to force liquid fluid out of compressed air. The spinning causes the condensate to join together on the centrifugal separators walls, then falls to the bottom of the separators bowl and flushed out of the system by the automatic float drain valve.

ISO8573-1:	[X:8:X]
efficiency:	>98%

Compressed Air & Gas Treatment

Email: info@ultra-dryer.de

5 FILTER

Compressed air filters are used for high efficient removal of solid particles,water, oil aerosols, hydrocarbons, odour and vapours from compressed airsystems. To meet the required compressed air quality, appropriate filter element must be installed into filter housing.

	M	S
	0.1µm	0.01µm
ISO8573-1:	[2:-:2]	[1:-:1]
MAX. Temperture:	65°C, 85	°C, 120°C
0.0		- C 20-

Optional: differential pressure indicator with voltage-free contact version for remote alarm.

Notice: If the differential pressure gauge is reaching the red area or the filter is working for more than 4000 hours, please replace the filter element in time.

6 DEW POINT MONITOR

Miniature size dew point transmitter; With auto-calibration; Calibration interval of two years; With stands condensation; Fast response time; Easy servicing and data transfer via the RS485 user interface.

measurement range:	-40 +20 °C
option 1	-60 +20 °C
option 2	-80 +20 °C
option 3	-100 +20 °C
Accuracy:	±2 °C (±3.6 °F)
IP grade:	IP54
Outputs:	
Analog output (scalable)	4-20 mA
Digital output.	RS-485

7 DEW POINT MONITOR DISPLAY

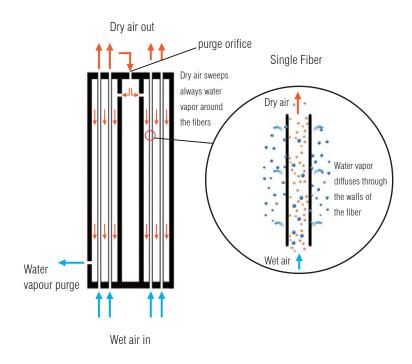
Ultra-Dryer's instruments provided with newest components and control algorithm. They will present the features of intelligent, standardization, as well as high reliability of microprocessor-based instruments to our customers.

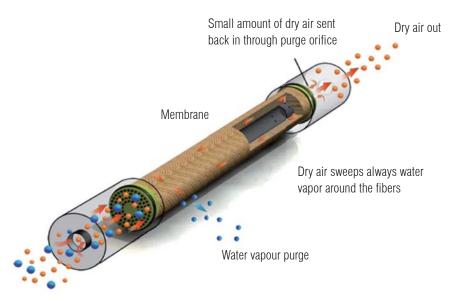
Protection grade: IP44
High dew point alarm output.

8 CONDENSATE DRAIN

Drains are needed at all separators, filters, dryers and receivers in order to remove the liquid condensate from the compressed air system.

Failed drains can allow slugs of moisture


to flow downstream, that can overload the air dryer and foul end use equipment.


Internal, external, electricity automatic. mechanical condensate drain

Optional: IP54, Time ON/OFF, Alarm output.

Membrane Air Dryer

How it Works

Water vapor from the supplied compressed air passes & diffuses through the walls of a boundle of hollow fibers of the membrane, at the same time, a small portion of the dry air product is redirected along the length of the fibers to sweep out the water vapor loaded air which has permeated the membrane. The moisture-loaded sweep air is then vented to the atmosphere. The clean & dry air is supplied for your application.

ULTRA-DRYER Membrane Dryers

THE NEXT GENERATION IN MEMBRANE TECHNOLOGY

Advancements in design allow membrane technology to efficiently dehydrate compressed air. Versatile, environmentally and user-friendly, membrane dryers are the ideal solution for low flow and point of use applications.

Versatile

- · Lightweight—can be installed without additional support
- Convenient mounting systems available
- High inlet and outlet flows
- Dryers may be sized to produce dew point temperatures from -40°F (-40°C) or below to +50°F (+10°C)

Efficient

Low sweep air rates — more air available downstream

No electricity, lowering operating costs

Low Maintenance

- · No power source required
- · No moving parts to maintain, repair or wear out
- · No consumables to replace
- · No liquid condensate to dispose of

Drying Protection

- Pressurized air is contained inside the membranes
- Housing contains air at atmospheric pressure
- No oil/water emulsions or chemicals to dispose of

Durable Construction

- Maximum working pressure for all models: 12.5 bar(g)
- Maximum inlet temperature: 60 °C

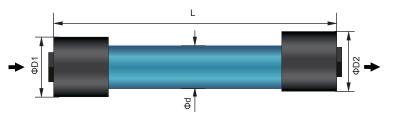
Attention to avoid oil inside membrance air dryer!

If membrane contaminated by oil, it would be damaged and could not be repaired.

Membrane Air Dryer

Technical specifications

Inlet co	nditions	7 bar(g), 35°C to:										
Outlet press	ure dew point	15	5°C	3°C		-20°C		-40°C				
% Water removal		69.70%		86.53%		98.20%		99.77%				
Model	Purge air m³ /h	Inlet air flow m³ /h	Outlet air flow m³ /h	Inlet air flow m³ /h	Outlet air flow m³ /h	Inlet air flow m³ /h	Outlet air flow m³ /h	Inlet air flow m³ /h	Outlet air flow m³ /h			
UDM 2	0.3	5.3	5	2.3	2	1.8	1.5	1.3	1			
UDM 4	0.6	8.6	8	4.6	4	3.6	3	2.6	2			
UDM 5	1	10	9	6	5	5	4	4	3			
UDM 8	1	16	15	9	8	7	6	6	5			
UDM 11	2	22	20	13	11	12	10	10	8			
UDM 15	2	27	25	17	15	15	13	12	10			
UDM 22	3	38	35	25	22	20	17	15	12			
UDM 30	5	50	45	35	30	30	25	20	15			
UDM 40	6	66	60	46	40	40	34	31	25			
UDM 60	9	109	100	69	60	50	41	44	35			
UDM 80	12	132	120	92	80	70	58	57	45			
UDM 110	18	178	160	128	110	100	82	78	60			


^{*}Purge tolerance +3% of maximum inlet flow range.

Performance correction factors for alternate pressures										
For maximum flow rate, multiply flow rate shown in above table by the correction factor corresponding to the working pressure.										
Operating pressure bar(g)	4	5	6	7	8	9	10	11	12	
Correction factor	0.4	0.6	0.8	1	1.2	1.5	1.7	1.9	2.2	
Correction factor	0.4	0.6	0.8	1	1.2	1.5	1.7	1.9	2	

Equation for determining inlet flow at designated pressure:

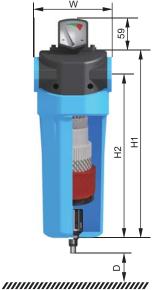
Outlet flow 7 bar(g) x Correction factor at different operating pressure = Outlet flow at different operating pressure

Specifications	Material / Value
Air Dryer Shell Material	Blue aluminum
Air Dryer End Cap Material	See dimensions table
Maximum Operating Temperature	80°C
Maximum Operating Pressure	12.5 bar(g)
Typical Pressure Drop	0.2 to 0.5 bar(g)
Compressed Air Temperature	3°C to 60°C
Pre-Filter(s)	Yes
After-Filter(s)	Optional

Model Dimensions(mm)			Compressed air connections	Air dryer end cap material	Weight		
Wodel	L	Фd	ΦD1	ΦD2	BSPT	All dryer end cap material	(kg)
UDM 2	224	43	58	58	1/4	Nylon	0.5
UDM 4	325	43	58	58	1/4	Nylon	0.7
UDM 5	427	43	58	58	1/4	Nylon	0.8
UDM 8	503	43	58	58	1/4	Nylon	0.9
UDM 11	312	61	81	81	1/2	Nylon	1.1
UDM 15	376	61	81	81	1/2	Nylon	1.2
UDM 22	465	61	81	81	1/2	Nylon	1.5
UDM 30	592	61	81	81	1/2	Nylon	1.7
UDM 40	411	89	109	109	1/2	Nylon	2
UDM 60	551	89	109	124	1/2	Nylon inlet, Aluminum outlet	5.2
UDM 80	627	89	109	124	1/2	Nylon inlet, Aluminum outlet	5.5
UDM 110	607	114	132	150	1	Aluminum	7.8

Note.

- (1)The correction factors should be applied to volume flow to suit the application and ensure dryer performance.
- (2) As the version is updated, the drawings are changed without prior notice.
- (3) To be used as a rough guide only, for special requirements please contact our technical department.


Compressed Air Filter

Filter

Floeriner's filters are designed for protection of the downstream compressed air system, equipment against defects and other failures.

They ensure high efficient removal of solid particles, water, oil aerosols, hydrocarbons, odour and vapours from compressed air systems up to 16 bar. Required compressed air quality according to standard ISO 8573-1 can be achieved with 5 different grades of filter elements (P, R, M, S, A). Optional internal and external condensate drains should be used for efficient condensate draining from filter housing.

		FIL	TER HOU	ISING D	ATA		FI	LTER ELEMEN	TS			
Filter housing	Pipe size	Max. oper. Press.	Flow rate at 7 bar(g) 20 °C		Dimensions [mm]		P prefilter	R prefilter	M microfilter	S microfilter	A activated	
size	inch	[bar]	Nm³/h	W	H1	H2	D	3 µm	1 µm	0,1 µm	0,01 µm	carbon
UF0060	G 1/2"	16	60	95	220	197	95	0060 P	0060 R	0060 M	0060 S	0060 A
UF0078	G 1/2"	16	78	95	220	197	110	0078 P	0078 R	0078 M	0078 S	0078 A
UF0120	G 3/4"	16	120	95	280	257	145	0120 P	0120 R	0120 M	0120 S	0120 A
UF0198	G 1"	16	198	125	320	290	185	0198 P	0198 R	0198 M	0198 S	0198 A
UF0335	G 1"	16	335	125	320	290	185	0335 P	0335 R	0335 M	0335 S	0335 A
UF0510	G 1 1/2"	16	510	125	400	370	230	0510 P	0510 R	0510 M	0510 S	0510 A
UF0780	G 2"	16	780	170	520	478	390	0780 P	0780 R	0780 M	0780 S	0780 A
UF1000	G 2"	16	1000	170	700	658	570	1000 P	1000 R	1000 M	1000 S	1000 A
UF1500	G 3"	16	1500	200	995	938	570	1500 P	1500 R	1500 M	1500 S	1500 A
UF1680	G 3"	16	1680	200	995	938	630	1680 P	1680 R	1680 M	1680 S	1680 A
UF2160	G 3"	16	2160	200	995	938	700	2160 P	2160 R	2160 M	2160 S	2160 A
UF2760	G 3"	16	2760	200	995	938	700	2760 P	2760 R	2760 M	2760 S	2760 A
	W				quality cl	ass - solids (ISO 8573-1)	6	3	2	1	1
•		<u> </u>		quality class - oils (ISO 8573-1)			—		2	1	_	
		29	_		pressure dr	op - new ele	ment [mbar]	10	20	50	80	60
	-	1 ↑		change	filter cartridge	e at pressure	drop [mbar]	350	350	350	350	6 mouths

Specification	Value
operating pressure	2 to 16 bar
connections	1/2" to 3"
volume flow rate	60 to 2760 Nm³/h
operating temperature range	1.5 to 65°C
standard colour:	RAL 5015

					CORF	RECTIC	N FAC	TORS							
Operating pressure [bar]	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Operating pressure [psi]	29	44	58	72	87	100	115	130	145	160	174	189	203	218	232
Correction factor	0.38	0.5	0.63	0.75	0.88	1	1.13	1.25	1.38	1.5	1.63	1.75	1.88	2	2.13

Outlet flow 7 bar(g) x Correction factor at different operating pressure = Outlet flow at different operating pressure.

Cyclone Oil & Water Separator

Condensate separator

Condensate separators are designed for high efficient removal of bulk liquids from compressed air and vacuum systems. Inside the housing there is an insert with vanes that creates controlled rotation of the air.

As a result of centrifugal action, liquids (water, oil) and large particles are forced to the housing wall, slowed down and accumulated at the bottom of separator housing as condensate. The turbulent free zone in the lower part of the filter housing prevents condensate from being picked up and "carried over" into the airstream. To discharge condensate from the cyclone separator it is essential to install automatic or electronic condensate drain.

	TECHNICAL DATA									
Filter housing	Pipe size	Max. oper. Press.	Flow rate at 7 bar(g) 20 °C	Temperature oper.range	Dimensions [mm]					
size	inch	[bar]	Nm³/h	°C	W	H1	H2	D		
US 60	G 1/2"	16	60	1.5-65	95	220	197	95		
US 78	G 3/4"	16	78	1.5-65	95	220	197	110		
US 120	G 3/4"	16	120	1.5-65	95	280	257	145		
US 198	G 1"	16	198	1.5-65	125	315	290	185		
US 510	G 1 1/2"	16	510	1.5-65	125	400	370	230		
US 1000	G 2"	16	1000	1.5-65	170	700	658	570		
US 1500	G 2 1/2"	16	1500	1.5-65	200	995	938	570		
US 2160	G 3"	16	2160	1.5-65	200	995	938	700		
quality class - solids (ISO 8573-1)										

	solids (ISO 8573-1)	quality class -	
8	- water (ISO 8573-1)	quality class -	
	ss - oils (ISO 8573-1)	quality class	
>98%	efficienty		

Specification	Value
operating pressure	2 to 16 bar
connections	1/2" to 3"
volume flow rate	60 to 2160 Nm³/h
operating temperature range	1.5 to 65°C
standard colour:	RAL 5015

					CORF	RECTIO	N FAC	TORS							
Operating pressure [bar]	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Operating pressure [psi]	29	44	58	72	87	100	115	130	145	160	174	189	203	218	232
Correction factor	0.38	0.5	0.63	0.75	0.88	1	1.13	1.25	1.38	1.5	1.63	1.75	1.88	2	2.13

Outlet flow 7 bar(g) x Correction factor at different operating pressure = Outlet flow at different operating pressure.

UDM Membrane air dryer Installation Guide

Design

Caution

a. Devise a layout which considers the position of the purge air discharge ports.

Purge air is humid air. Devise a layout in which the humid purge air will not cause corrosion or malfunction of peripheral equipment.

b. Ultra-dryer Liability:

Warranty for Ultra-dryer UDM is 1 year from date of shipment. Ultra-dryer will not accept any liability if the following requirements and the instructions for installation are not respected:

- Appropriate pre filtration must be installed upstream the membrane air dryer (1 μ particulate and 0,01 μ coalescing)
- The pre-filtration must be replaced on a regular basis (minimum half a year). Ultra-dryer shall not be liable for damage due to improper or incorrect use, wear, storage or other actions by third parties or the purchaser.

Requirements:

Temperature: There must be no possibility of frost at the place of

installation. Both the environmental temperature and compressed air temperature should range from +3°C

to +60°C (140°F).

Maximum Pressure: 12.5 barg

Pre-Filtration Required: 1µm particulate filter

0.01 µ coalescing filter

Particulate and oil contamination as well as liquid condensate have to be safely removed and retained before the compressed air flows into the membrane

air dryer.

c. Time to reach the rated dew point

A certain amount of time is required to achieve the rated dew point after the air begins flowing into the membrane air dryer. Use the times below as a guide, and begin operating the outlet side equipment after the rated dew point is achieved.

Standard dew point -20oC, -15oC: about 10 min.

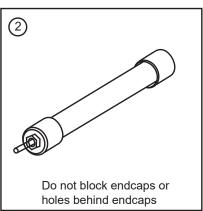
Selection

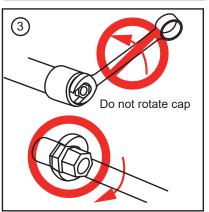
Caution

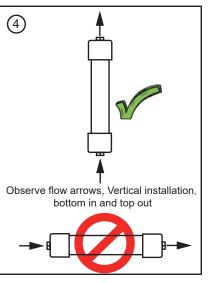
Consider the purge air flow rate in total flow rate requirements.

Find the purge air flow rate from the charts and calculate the "required outlet air flow rate + purge air flow rate". The air supply capacity must be at lease equal to the calculated flow or the required outlet air flow rate cannot be obtained.

Mounting




Caution


- a. Ultra-dryer UDM membrane air dryer must only be used in industrial applications for compressed air.
- b. The compressed air system must be fully depressurized while pneumatic components are being installed.

Note: If maximum flow rate for the membrane air dryer exceeds the published rate, the specified dew point suppression may not be met.

ULTRA-DRYER

UDM Membrane air dryer Installation Guide

- c. Do not obstruct the purge air discharge ports.
 Dehumidification performance will decrease or may become impossible if purge air back pressure becomes too high or purge air stops flowing.
- d. Provide proper filtration on the inlet side of a membrane air dryer. 1 μ m air filter and a 0.01 μ coalescing filter must be installed inline, prior to the Ultra-dryer UDM membrane air dryer. The Membrane air dryer must be located directly downstream of the 0,01 coalescing filter in order to avoid renewed condensate formation.
- e. Remove water droplets from the inlet air Water droplets in the air can lower performance and cause malfunction.
- f. Large quantities of dust (solid foreign matter) are contained in the supply air.
- When there are large quantities of dust (solid foreign matter), install an air filter or main line filter to the inlet side of the mist separator.
- g. Install a regulator on the outlet side of the membrane air dryer.

 Dehumidification performance will be reduced if a regulator is a regulator is installed on the inlet side of the membrane dryer.
- h. Ensure that intermittent pressure is not applied to the product. Do not frequently operate a solenoid valve on the inlet side. The membrane dryer can be damaged if inlet pressure is applied intermittently.
- i. Ultra-dryer UDM membrane air dryer to be installed vertically, the air flow direction to be bottom-up.
- j. Ensure air lines to the air dryer and air dryer are aligned in the correct flow direction

Piping

Warning

a. Confirm locking of case and body

When using in a unit, be sure to set the air pressure to zero before using a condensate separator or prefilter with modular connections. Also, confirm that the body and case are locked together with a click before starting the flow of compressed air.

b. Confirm tightening of the holder.

Before starting the flow of compressed air, turn the Membrane air dryer's holder in its tightening direction, confirming that it is completely tightened and that the case will not come off.

Caution

a. Use of tools

Hold the upper portion of the body (aluminum die-casted section) with a spanner or adjustable angle wrench. Do not turn it while holding the case section.

b. Drain piping for separators

Use a tube of the prescribed size and keep the length within 5 meters or less when installing drain piping for condensate separator or filters. Be sure that the tube does not rise up or become folded over.

c. Flush pipes before installation.

Use an air blower to flush the piping to thoroughly remove any cutting chips, cutting oil, or debris from the piping inside, before connecting them. If they enter the inside of products, they could cause products to malfunction, lower performance or damage the element.

Air Supply

Caution

a. Compressed air supply capacity

An air source that has a supply capacity that is larger than the "necessary outlet air flow rate (dry air flow rate) + purge air flow rate" is required. See the purge air flow rate diagram in the catalog for the purge air flow rate.

b. Avoid chemical substances which have an adverse effect on the product

The chemical substances stated in the table below can reduce the performance or damage the membrane element. Do not use the membrane dryer in an environment containing these chemicals substances.

Type	Harmful Substances
Solvent	Acetone, Benzene, Phenol, Toluene, Trichloroethylene, Xylene, Cresol, Thinner, Aniline, Chloroform, Ethyl Alcohol, Methyl Alcohol, Chlorobenzene, Trichloroethane, Ethylbenzene, Isopropyl Alcohol, Dioxane, Tetrahydrofuran, Methyl Chloride, Cyclohexanone, Carbon Tetrachloride, Methyl Ketone, Ethyl Ketone, etc.
Acid	Sulfuric Acid, Nitric Acid, Hydrochloric Acid, Acetic Acid, Lactic Acid, Chromic Acid, etc.
Gas	Chlorine, Sulfurous Acid, Hydrogen Sulfide, Bromine, Ozone, Ammonia, etc.
Oil	Hydraulic Fluid (Phosphoric Ester), Fuel Oil, Water Soluble Cutting Fluid (Alkaline), Kerosene, etc.
Strong Bases	Lithium hydroxide, Sodium hydroxide, Potassium hydroxide, Calcium hydroxide, etc.
Others	Anaerobic thread lockers

Operating Environment

Caution

a. Do not use at temperatures (fluid or ambient temperatures) higher than the prescribed operating conditions.

Resin is used in the membrane module (element), and it can be damaged by operation at high temperatures.confirm that the fluid temperature does not exceed the membrane dryer's range of operating conditions during use, especially when installed immediately after a reciprocating type air compressor.

b. Keep the inlet air temperature lower than the ambient temperature.

Condensation and water drops may accumulate inside of the membrane dryer's body and reduce its dehumidification capacity if the membrane air dryer's body is cooled by the ambient air.

EUROPE

Rödingsmarkt 20, 20459 Hamburg, Germany. Telephone: +49 (40) 3501 5259 Mobilephone: +49 0152 0752 2303 Email: info@ultra-dryer.de

ASIA

16F, Ping'an Fortune Center, Binhu Districr, Wuxi city, China. Telephone: +86 0510 85609386 Email: sales@ultra-dryer.de